30日发表在《自然》和《自然·通讯》上的两项新研究,为细胞如何持续修复其DNA中的受损部分提供了一幅全新的图景,引发对DNA修复领域的一些基本理论的重新思考。由美国纽约大学格罗斯曼医学院研究人员领导的这项工作围绕DNA分子展开。DNA分子很容易受到细胞新陈代谢、毒素和紫外线的破坏。由于DNA受损可能导致有害的DNA突变和死亡,因此细胞进化出了DNA修复机制。然而,该领域的一个重大的悬而未决的问题是,这些细胞如何在未损坏的DNA的“广阔领域”中快速搜索并找到罕见的损伤区域。
过去的研究已经发现,一种重要的搜索机制——转录偶联修复(TCR)依赖于RNA聚合酶,这是一种沿着DNA链向下运动的大型蛋白质机器(复合体),它在将指令转录成RNA分子时读取DNA“字母”的密码,然后RNA分子指导蛋白质的构建。然而,研究人员表示,此前被广泛接受的观点,甚至包括获得2015年诺贝尔化学奖的研究,都误解了TCR机制。
此前研究认为,TCR在修复中发挥的作用相对较小,因为它依赖于一个假定的TCR因子,该因子对DNA修复只有微小的贡献。而全基因组修复(GGR),被认为扫描和修复了大部分DNA而不依赖于转录。这两个过程都被认为为核苷酸切除修复(NER)奠定了基础。
然而,两项新研究一致认为,基于对活大肠杆菌细胞DNA修复的首创多阶段分析,大多数NER是与RNA聚合酶偶联,后者扫描整个细菌遗传密码以寻找损伤区域。
发表于《自然》杂志上的研究发现,RNA聚合酶是组装整个NER复合体的支架,也是DNA损伤的主要传感器。结果表明,NER的主要酶UvrA和UvrB不能自行定位大多数病变,而是通过RNA聚合酶传递给它们。
第二项发表于《自然·通讯》杂志的研究则表明,蛋白质Rho可发出信号,告诉RNA聚合酶停止读取全基因信息。实验表明,细菌的细胞抑制了蛋白质Rho的活动,这意味着停止信号减弱,因此RNA聚合酶会继续读取,并将修复酶传递到整个基因组中遇到的DNA损伤的地方。
《自然》杂志研究报告的第一作者、努德勒实验室博士后学者比诺德·巴拉蒂博士说,根据新发现推测,包括人类细胞在内的真核生物也在全基因范围内使用RNA聚合酶进行有效的修复。未来,研究团队计划确认是否存在适用于全基因的TCR,如果得到证实,将探索未来是否可以安全地促进修复DNA损伤,从而对抗衰老或疾病。